Exercise 16

Use the modified decomposition method to solve the following Volterra integral equations:

$$
u(x)=x^{3}-x^{5}+5 \frac{1}{10} \int_{0}^{x} t u(t) d t
$$

[TYPO: In order to get the answer at the back of the book, this factor of $1 / 10$ should not be here.]

Solution

Assume that $u(x)$ can be decomposed into an infinite number of components.

$$
u(x)=\sum_{n=0}^{\infty} u_{n}(x)
$$

Substitute this series into the integral equation.

$$
\begin{aligned}
\sum_{n=0}^{\infty} u_{n}(x) & =x^{3}-x^{5}+5 \int_{0}^{x} t \sum_{n=0}^{\infty} u_{n}(t) d t \\
u_{0}(x)+u_{1}(x)+u_{2}(x)+\cdots & =x^{3}+\left(-x^{5}\right)+5 \int_{0}^{x} t\left[u_{0}(t)+u_{1}(t)+\cdots\right] d t \\
u_{0}(x)+u_{1}(x)+u_{2}(x)+\cdots & =\underbrace{x^{3}}_{u_{0}(x)}+\underbrace{\left(-x^{5}\right)+5 \int_{0}^{x} t u_{0}(t) d t}_{u_{1}(x)}+\underbrace{5 \int_{0}^{x} t u_{1}(t) d t}_{u_{2}(x)}+\cdots
\end{aligned}
$$

Grouping the terms as we have makes it so that the series terminates early.

$$
\begin{aligned}
u_{0}(x) & =x^{3} \\
u_{1}(x) & =\left(-x^{5}\right)+5 \int_{0}^{x} t u_{0}(t) d t=\left(-x^{5}\right)+x^{5}=0 \\
u_{2}(x) & =5 \int_{0}^{x} t u_{1}(t) d t=0 \\
& \vdots \\
u_{n}(x) & =5 \int_{0}^{x} t u_{n-1}(t) d t=0, \quad n>2
\end{aligned}
$$

Therefore,

$$
u(x)=x^{3} .
$$

